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Abstract Radar quantitative precipitation estimates (QPEs) were assessed using reference values established by
means of a geostatistical approach. The reference values were estimated from raingauge data using the block krig-
ing technique, and the reference meshes were selected on the basis of the kriging estimation variance. Agreement
between radar QPEs and reference rain amounts was shown to increase slightly with the space–time scales. The
statistical distributions of the errors were modelled conditionally with respect to several factors using the GAMLSS
approach. The conditional bias of the errors presents a complex structure that depends on the space–time scales
and the considered geographical sub-domains, while the standard deviation of the errors has a more homogeneous
behaviour. The estimation standard deviation of the reference rainfall and the standard deviation of the errors
between radar and reference rainfall were found to have the same magnitude, indicating the limitations of the
available network in terms of providing accurate reference values for the spatial scales considered (5–100 km2).

Key words Mediterranean heavy precipitation; weather radar; quantitative precipitation estimation; error model; space and
time scales; GAMLSS

Dépendance de l’erreur d’estimation des lames d’eau radar à l’intensité de pluie dans les
Cévennes, France
Résumé Les estimations quantitatives de pluie par radar (EQP radar) sont évaluées par rapport à une référence
selon une approche géostatistique. Les valeurs de référence sont déduites de mesures pluviométriques en util-
isant le krigeage de bloc. Les mailles de référence sont choisies en fonction de la variance d’estimation du
krigeage. La cohérence entre EQP radar et pluie de référence augmente légèrement avec les échelles spatio-
temporelles. Les distributions conditionnelles des erreurs sont modélisées en fonction de l’intensité de pluie par
l’approche GAMLSS. Le biais conditionnel des erreurs a une structure complexe en fonction des échelles spatiales
et temporelles ainsi que des domaines spatiaux considérés, alors que l’écart-type de l’erreur a un comportement
spatialement plus homogène. L’écart-type d’estimation de la référence et l’écart-type de l’erreur sont du même
ordre de grandeur, ce qui montre les limitations du réseau pluviographique disponible pour les échelles spatiales
considérées (5–100 km2).

Mots clefs précipitations méditerranéennes intenses; estimation quantitative des pluies; modèle d’erreur; échelles spatiales et
temporelles; GAMLSS

INTRODUCTION

Characterization of the error structure of radar
quantitative precipitation estimates (QPEs) is a major
issue for applications such as assimilation of radar
data in numerical weather prediction (NWP) models
(Caumont et al. 2006, Berenguer and Zawadzki 2008)

and forcing of hydrological models with distributed
rainfall data (e.g. Creutin et al. 1997, Ciach and
Krajewski 1999, Ciach et al. 2007, Habib et al. 2008,
Germann et al. 2009, Villarini et al. 2009, Kirstetter
et al. 2010). One possible approach, referred to as
a “physical approach” hereafter, is to examine all
sources of errors (Villarini and Krajewski 2010)

© 2014 IAHS Press
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2 Guy Delrieu et al.

separately and evaluate their cumulative effects.
Pellarin et al. (2002) proposed the “hydrologic visi-
bility” concept to quantify QPE systematic bias for
radar systems operating in mountainous regions as
a function of radar parameters (e.g. beam width,
radar location and operating protocol). Berenguer and
Zawadzki (2008) studied the full error covariance
matrix of radar rainfall estimates by considering a
large set of high-resolution S-band radar data and
concomitant drop-size distribution (DSD) measure-
ments. They focused on the combined errors asso-
ciated with the transformation of reflectivity into
rain rate and increasing beam broadening as a func-
tion of range in stratiform rainfall. Such a physical
approach was particularly relevant to the objective
of these authors, which was to assimilate raw radar
data into NWP models. However, they recognized
that the approach would become hardly tractable if
additional error sources had to be considered, e.g.
for shorter radar wavelengths due to the effects of
attenuation. In addition, sophisticated data process-
ing algorithms (Germann et al. 2006, Tabary 2007,
Tabary et al. 2007, Delrieu et al. 2009) are now gen-
erally implemented in operational practice to cope
with such error sources and increase the quality of
radar QPEs. The physical approach is therefore also
limited by the impact of the processing algorithms
on the radar data sets. In other words, the radar
QPE error structure is also radar data processing
dependent.

The other approach consists of comparing radar
QPEs with external reference values to characterize
the overall error structure. Such a “product-error-
driven” approach has been implemented many times
in the past using reference values derived from data of

dense raingauge networks (e.g. Delrieu et al. 1988),
most recently for the NEXRAD system (Ciach et al.
2007, Krajewski et al. 2009, Seo and Krajewski
2011) in the USA and the Cévennes-Vivarais
Mediterranean Hydro-meteorological Observatory in
France (Kirstetter et al. 2010). Figure 1, which will be
discussed in detail further on in this article, displays
two examples of scatter plots between radar QPEs
and reference rain amounts for two pairs of space–
time scales (5 km2, 1 h; 50 km2, 12 h). Note that
(a) the agreement between the two variables increases
with the space and time scales; (b) the characteris-
tics of the mean and variance of the error vary as a
function of the reference rainfall value; and (c) con-
ditional bias may exist at certain scales, e.g. for the
1-h time step (slight mean overestimation of the radar
QPE between 20 and 40 mm, significant underesti-
mation above 40 mm), and not at others, e.g. for the
12-h step.

Based on the above considerations, this study
aims to establish conditional probability distribution
functions of radar errors over a range of spatial
(5–100 km2) and temporal (1–12 h) scales. The ref-
erence rainfall is estimated in a geostatistical frame-
work, making it possible to assess its accuracy.
We want to study the dependence of the radar errors
on several factors, primarily the rain intensity (or
rain amount) and radar range, using a new approach
based on Generalized Additive Models for Location,
Scale and Shape (GAMLSS) proposed by Rigby and
Stasinopoulos (2005). In the next section we present
the context of our study and the associated data set.
In subsequent sections, we discuss the reference rain-
fall and the radar error model, followed by a summary
and conclusions.

12 h; 50 km²1 h; 5 km²

Reference rainfall (mm) Reference rainfall (mm)
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Fig. 1 Scatter plots of radar QPEs vs reference rainfalls for the space–time scales (a) 1 h; 5 km2 and (b) 12 h; 50 km2. The
conditional distributions are established with the GAMLSS approach, assuming a Gaussian distribution of the errors. The
conditional mean is represented by the black-dot curve and the 1:1 line by the thin solid line.
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Dependence of radar QPE error on rain intensity 3

CONTEXT AND DATA SET

A detailed description of the Cévennes-Vivarais
Mediterranean Hydrometeorological Observatory
(CVMHO) is given by Boudevillain et al. (2011).
Figure 2 shows the region of interest and the rainfall
observation systems used herein, which include:
(a) the S-band weather radar system of the Météo
France ARAMIS network at Bollène; and (b) an
hourly raingauge network with 252 raingauges over

the 32 000 km2 of the CVMHO window. Three
events that produced major road traffic disturbances
in part of the region (the Gard department) in
2007 and 2008 were selected for the present study
(Fig. 3). Due to its extraordinary magnitude, the
catastrophic event of 8–9 September 2002 (Delrieu
et al. 2005, Bonnifait et al. 2009) was included in the
following analyses. Radar QPEs were obtained with
the TRADHy software (Traitements Régionalisés

Fig. 2 Location of the CVMHO window in France (insert) together with a map of the rainfall observation system superim-
posed on the topography and the main catchments of the Cévennes region. The + signs refer to the hourly raingauge network;
the radar pictogram and the 50-km range markers refer to the Météo France Bollène radar. The four main catchments
(Ardèche, Cèze, Gardon, Vidourle from top to bottom) are subdivided into hydrological meshes of about 50 km2.
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4 Guy Delrieu et al.

19–22 October 2008 31 October–1 November 2008

8–9 September 2002 29–30 September 2007

Fig. 3 Rainfall maps obtained at the event time scale from
the raingauge network (anisotropic kriging) for the four
rain events. The visualization windows (black boxes) have
been sized to the spatial extent of each rain event. The
rainfall isolines are spaced at 100 mm, except for the
29–30 September rain event (50 mm).

et Adaptatifs de données radar pour l’Hydrologie;
regionalized and adaptive radar data processing for
hydrological applications, Delrieu et al. 2009), which
copes with orogenic and anthropic clutter, beam
shielding, rain partitioning into convective and strat-
iform rainfall, and the subsequent vertical profile of
reflectivity identifications and corrections. Regarding
bias correction, an “effective” Z–R relationship was
optimized for each single event so as to minimize
the bias and the conditional bias between radar and
raingauge estimates at the event time scale following
the approach proposed by Bouilloud et al. (2010).

REFERENCE RAINFALL

Problem formulation and spatial estimation of
reference rainfall amounts

The true unknown rainfall amount falling on a given
area, A, centred at point x, over a given time interval
T , centred at time t, can be expressed as:

RAT =
�
T

�
A

R(x, t) dx dt (1)

where R denotes the true rainfall intensity at a given
location x and time t.

The radar QPEs to be assessed are determined
for a grid with a good spatial resolution of typically
1 km2. Therefore radar QPEs over area A may be
expressed as:

R∗
AT = 1

NA

NA∑
i=1

R∗
T (ai, t) (2)

where ai is the area of a radar pixel, NA the num-
ber of pixels in area A and R∗

T the radar estimated
rain amount falling over a time interval T centred at
time t.

To establish the reference rainfall amounts,
denoted Rref

AT , from the raingauge network data,
we used the block kriging technique (Journel and
Huijbregts 1978, Goovaerts 1997) with:

Rref
AT =

Ng∑
i=1

λiGT (xi, t) (3)

where GT(xi,t) is the raingauge amount at point xi for
time interval T centred at time t and Ng is the num-
ber of raingauges accounted for in the estimation. The
coefficients {λi, i = 1, Ng} are the kriging weights
obtained by minimizing the estimation variance:

σ 2
ref = E(Rref

AT − RAT )2 (4)

under unbiasedness condition:

E(Rref
AT ) = E(RAT ) (5)

The definite advantage of this geostatistical method
over other interpolation techniques is that the estima-
tion variance (equation (4)) provides a measure of the
accuracy of the reference values that depends on the
spatial structure of the variable to be estimated and
the relative configuration of the network and the area
of interest (A).

The availability of such a metric leads naturally
to consider the residuals (rather than the ratios for
instance) between the estimated and reference values
as the working variable of the radar error model, with:

�ref
AT = R∗

AT − Rref
AT = �i,k (6)
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Dependence of radar QPE error on rain intensity 5

where i indexes a given integration domain of size A
and k a time step of duration T .

The kriging technique utilizes the variogram
function:

γT (h) = 1

2
E(RT (x, t) − RT (x + h, t))2 (7)

to model the spatial correlation of the rain fields; here
h denotes a horizontal distance and RT the point value
of the rain amount over a duration T . From rain-
gauge data collected in the Cévennes region, Lebel
et al. (1987) have established the following empir-
ical model for the de-correlation distance (range of
the variogram) as a function of the time interval
considered:

d = 25 T0.3 (8)

with d the distance in km and T the time in h, lead-
ing to de-correlation distances of about 25, 43 and
64 km for durations of 1, 6 and 24 h, respectively. This
shows that the spatial representativeness of raingauge
measurements increases with the rainfall duration.
The CVMHO raingauge data were critically analysed
following the method described by Kirstetter et al.
(2010). Next, several kriging techniques (Goovaerts
1997) were implemented:

(a) ordinary kriging (OK) with the climatologi-
cal variogram (equation (8)), assumed to be
isotropic;

(b) OK with an isotropic variogram inferred for each
time step from radar data; and

(c) OK with an anisotropic variogram inferred for
each time step from radar data (Velasco-Forero
et al. 2009).

No significant difference was found between the three
methods in terms of performance assessed in a cross-
validation exercise (not shown here for the sake of
conciseness). Therefore, we use hereafter the simple
climatological OK method to estimate the reference
rainfall.

Selection of reference values based on the kriging
estimation variances

The error model is built on the following principles:
for a given landscape discretization into hydrological
meshes of size A, we select a number of reference
meshes for which the estimation is assumed to
be good as the result of a good local raingauge
coverage. For this purpose, we use the OK estimation

variance expressed, when optimized, by the following
equation:

σ 2
ref = −γ00 +

∑
i

λi γ0i + μ (9)

where i indexes the intervening raingauges and μ is a
Lagrange multiplier. Practically speaking, the integra-
tion domain is discretized into NA Cartesian meshes,
and the terms γ 0i and γ 00 are estimated by:

γ0i = 1

NA

NA∑
j=1

γij (10a)

and

γ00 = 1

N2
A

NA∑
j=1

NA∑
k=1

γjk (10b)

Figure 4 gives two examples of the spatial dis-
cretization of four of the main Cévennes catchments
(Ardèche, Cèze, Gardon, Vidourle) into hydrological
meshes of 5 and 50 km2. Also displayed in these maps
are the normalized block kriging estimation variances
(dimensionless quantities) for the 1-h time step using
the climatological model (8): that is a variogram with
a range of 25 km. The term “normalized” refers to
the fact we have used a variogram sill equal to 1 in
the calculations, while the variogram sill is theoreti-
cally equal to the field variance σ 2

f (t). The maps of
the normalized estimation variances summarize the
estimation quality over the considered area. Clearly,
the hydrological meshes containing (or located in the
vicinity of) raingauges have low normalized estima-
tion variances, while in the regions of low raingauge
density (e.g. in the southeast part of the map), the nor-
malized estimation variances reach values of about
0.6, whatever the spatial scale (5 or 50 km2). For
higher integration time steps, due to the increasing
de-correlation distance (see equation (8)), the normal-
ized estimation variances significantly decrease (not
shown for the sake of conciseness).

We have arbitrarily chosen to select as reference
values in the following, the OK values obtained over
hydrological meshes with normalized estimation vari-
ances σ 2

refN < 0.1. The following procedure is then
used to de-normalize the estimation variances in order
to express them in units of mm2. Since the variogram
sill is theoretically equal to the field variance, the ref-
erence estimation variances for a given time step and
a given hydrological mesh can be expressed as:
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Fig. 4 Two examples of the spatial discretization of four of the main Cévennes catchments (Ardèche, Cèze, Gardon,
Vidourle) into hydrological meshes of (a) 5 km2 and (b) 50 km2. Also displayed are the normalized ordinary kriging
estimation variances for the 1-h time step using a climatological variogram model with a range of 25 km.

σ 2
ref(A, T , t) = σ 2

f (T , t) σ 2
refN(A, T , t) (11)

where σ 2
f (T ,t) is the field variance. For practical

estimation, we consider the method proposed by
Lebel et al. (1987) and already implemented by
Kirstetter et al. (2010) for 1-km2 integration areas
in the CVMHO. According to this method, a lin-
ear regression is first established between the field
standard deviation σ f(T ,t) and the field mean mf(t)
with:

σf (T , t) = aT mf (T , t) (12)

Then a local mean, denoted by mAT(t), is estimated for
each hydrological mesh and time step, and used in the
de-normalization procedure instead of the field mean
to account for the non-stationarity of the rain field,
through the following expression:

σ 2
ref(A, T , t) = a2

T mAT (t)2 σ 2
refN(A, T , t) (13)

Figure 5 displays the regression analyses between the
field standard deviation and the field mean (equa-
tion (14)) for the 1-h and 12-h integration time steps.
These graphs confirm the validity of the proposed lin-
ear relationship between these two variables. Figure 6
shows the resulting relationships between the de-
normalized estimation standard deviations (equation
(15)) and the reference rain amounts, for the reference
hydrological meshes corresponding to the space–time
scales of (5 km2; 1 h) and (50 km2; 12 h). The upper
parts of the scatter plots are somewhat truncated due
to the threshold considered on the normalized estima-
tion variances (σ 2

refN ≤ 0.1). Linear regressions are

(a)
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Fig. 5 Spatial standard deviation of the rain fields as a func-
tion of the spatial mean for two integration time steps: (a)
1 h and (b) 12 h.

found to satisfactorily represent the overall trends.
As expected, there is a significant decrease in the
slopes of such relationships when the space–time
scales increase (0.347 and 0.254 for the two cases,
respectively). Such linear models will be used in
the next section to compare the estimation standard
deviations of the reference values with the standard
deviations of the errors between radar QPEs and
reference values.
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Dependence of radar QPE error on rain intensity 7
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Fig. 6 Estimation standard deviation as a function of the
rainfall value for the reference hydrological meshes for (a)
the (1 h; 5 km2) and (b) the (12 h; 50 km2) space–time
scales.

THE RADAR ERROR MODEL

Analysis of standard assessment criteria

Table 1 provides the values of standard assessment
criteria between the radar QPE and OK reference val-
ues over a range of space–time scales (1, 2, 6 and
12 h; 5, 10, 50 and 100 km2). The criteria used are
the mean values of the two series, the coefficient of

determination (square of the correlation coefficient)
and the Nash-Sutcliffe efficiency. The means exhibit
a consistent trend as a function of the space and time
scales; their comparison shows a positive overall bias
of the radar QPE, increasing from about 3.5% for
the 1-h time step up to 9% for the 12-h time step.
The coefficient of determination and Nash-Sutcliffe
efficiency both show a slight but significant increase
with increasing time step and/or hydrological mesh
size.

To further discuss these results, Fig. 1, already
referred to in the introduction, provides examples
of the radar QPE vs reference rainfall assessment
for two space–time scales. Visually, the results can
be considered to be good for the (50 km2, 12 h)
case. Note that this is in part related to the opti-
mization of an effective Z–R relationship for each
single event performed so as to minimize the bias
and conditional bias at the event time step. A comple-
mentary explanation comes from the good visibility
of the Bollène radar for such well-developed con-
vective events, especially those which took place in
the plains of the CVMHO window (8–9 September
2002 and 29–30 September 2007). Unfortunately, the
significant conditional bias observed for the (5 km2,
1 h) case shows that the optimization of the Z–R
relationship at the event time scale does not guaran-
tee unbiased estimation in the conditional sense at
shorter time scales. This problem of the scale depen-
dence of the Z–R relationship, already identified by
Krajewski and Smith (2004), may lead us to recon-
sider the Z–R optimization procedure used, which is

Table 1 Assessment criteria calculated between the radar QPEs and the climatological ordinary kriging reference rainfall
for the four rain events overall. The selected reference hydrological meshes are those with a normalized estimation standard
deviation σ 2

refN ≤ 0.1 whatever the space–time scale. (0,0) pairs are excluded from the criteria computations.

Integration time
step (h)

Integration domain
size (km2)

Radar QPE
mean (mm)

Reference rainfall
mean (mm)

Coefficient of
determination

Nash-Sutcliffe
efficiency

Sample
size

1 5 12.1 11.7 0.79 0.78 3440
10 11.5 11.1 0.80 0.80 2630
50 10.5 10.1 0.82 0.80 1800

100 10.1 9.6 0.84 0.82 1350
2 5 19.1 18.2 0.83 0.82 3930

10 17.8 17.0 0.84 0.83 3080
50 15.9 15.2 0.85 0.83 1860

100 15.8 14.8 0.87 0.85 1180
6 5 42.5 40.2 0.88 0.87 3380

10 39.5 37.2 0.88 0.87 2440
50 35.9 33.2 0.90 0.88 1140

100 35.5 32.6 0.91 0.89 650
12 5 63.3 58.3 0.91 0.90 2850

10 61.1 56.1 0.92 0.90 1980
50 58.6 54.2 0.93 0.91 770

100 58.0 53.3 0.94 0.92 430
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8 Guy Delrieu et al.

part of the (off-line) radar data processing system,
e.g. by performing the optimization over a range of
temporal scales. This example illustrates how a more
detailed error model can be used to identify the weak-
nesses of the radar products and provide guidance to
improve the processing algorithms. Here, we propose
and illustrate a methodology to obtain such detailed
assessments.

Conditional distributions of the errors (radar
QPE – reference values)

We will extend the preliminary work of Kirstetter
et al. (2010) on the characterization of the condi-
tional distributions of the residuals �i,k , expressed
by equation (6) between the radar QPE and the ref-
erence values, as a function of the reference values.
Hereafter, the conditional distributions of the errors,
denoted by fAT (� | R ref), are established within the
framework of the generalized additive models for
location, scale and shape proposed by Rigby and
Stasinopoulos (2005) and available in an R package
called GAMLSS (Stasinopoulos et al. 2008). Such
semi-parametric models consist of two components:
a parametric probability density function (pdf) giving
each value of the explanatory variable and a non-
parametric relationship between the pdf parameters
over the definition domain of the explanatory variable.
The conditional densities are assumed to have the
same parametric form for all values of the explanatory
variable. The GAMLSS package offers a wide range
of two-parameter (Gaussian, reverse Gumbel, gamma,
log-normal, etc.) and three-parameter (exponential
Gaussian, power exponential, t-family, etc.) continu-
ous pdfs, as well as a number of non-parametric fitting
techniques (cubic splines, penalised splines, loess
function, etc.) for the second component of the model.
The goodness-of-fit of a given model is assessed by
investigating the so-called generalized Akaike infor-
mation criterion (GAIC), a penalised function of the
log-likelihood function to be minimized in the fitting
procedure.

Figure 7 illustrates the fitting of the GAMLSS
models for the errors as a function of the reference
rainfall for three pdf models in the case of the (5 km2,
1 h) space–time scales. Figure 7(a) corresponds to the
fits obtained with the Gaussian pdf (NO hereafter):

f1(y |μ, σ ) = 1

σ
√

2π
exp

(
− (y − μ)2

2σ 2

)
(14)

(c)

(b)
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Fig. 7 Modelling the errors between radar QPEs and ref-
erence rainfall with the GAMLSS concept for the (1 h;
5 km2) space–time scale under the assumption of (a) a
Gaussian pdf, (b) a Power Exponential pdf and (c) a
Reverse Gumbel pdf.

Figure 7(b) corresponds to those obtained with a
symmetric three-parameter pdf called the power expo-
nential pdf (PE), defined as:

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
O

kl
ah

om
a 

L
ib

ra
ri

es
] 

at
 1

3:
06

 0
7 

Fe
br

ua
ry

 2
01

4 



Dependence of radar QPE error on rain intensity 9

f2(y |μ, σ , ν) = 1

2cσ�(1/ν)

× exp

(
−

∣∣∣∣ (y − μ)

cσ

∣∣∣∣
ν) (15a)

with:

c2 = �(1/ν)/�(3/ν) (15b)

The PE distribution is suitable for leptokurtic as
well as platykurtic data. Note that ν = 1 and ν = 2
correspond to the Laplace (i.e. two sided exponen-
tial) and normal distributions, respectively, while the
uniform distribution is the limiting distribution as
ν → +∞.

Finally, the reverse Gumbel (RG) function (Fig.
7(c)) is a two-parameter pdf suitable for moderately
positive skewed data:

f3(y |μ, σ ) = 1

σ
exp

{
−

(
(y − μ)

σ

)

− exp

(
− (y − μ)

σ

)} (16)

As a general trend for the fitting tests over all the
space–time scales, the PE pdf was found to give better
results than the NO pdf, or the other two- or three-
parameter symmetric pdfs. As can be seen in Fig. 7(a)
and (b), the PE fit corresponds to a leptokurtic case, a
result consistent with the findings of Kirstetter et al.
(2010) who indicated the Laplace pdf to be prefer-
able to the Gaussian pdf in their case study. Among
all the pdfs tested, the RG distribution was found to
be the best compared with the symmetric distribu-
tions. This is likely due, in part, to the fact that the
distribution of the residuals is inherently asymmetric:
for a given reference value, the residual varies from
–Rref to +∞. Note, however, the presence of a num-
ber of outlying high radar QPE values in the scatter
plots, especially in the 0–20 mm range for the exam-
ple of Fig. 7. This problem may be associated with
residual clutter given the very high level of clutter
observed in the considered mountainous region for
the S-band frequency, as pointed out by Delrieu et al.
(2009). Note that the performance of the log-normal
distribution is lower (not shown here) than both the
PE and RG distributions, and similar to the NO dis-
tribution. As can be seen in Fig. 7, the quantiles and
conditional means resulting from these fits can be sig-
nificantly different, especially between the symmetric
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Fig. 8 (a) Mean and (b) standard deviation of the errors
between the radar QPE and reference rainfall vs the ref-
erence rainfall for the (1 h; 5 km2) space–time scales. The
thick black curves correspond to the results for the entire
set of reference meshes while the grey dashed curves cor-
respond to the mountainous and plain parts of the region
for two radar ranges. In addition the dotted line in the bot-
tom figure presents the trend of the estimation standard
deviation of the reference rainfall for the selected reference
meshes.

and asymmetric pdfs. The above arguments led us
to select the PE distribution for discussion of the
results.

Figures 8 and 9 present the mean and standard
deviation of the errors (i.e. the residuals) as a func-
tion of the reference rainfall for the (1 h, 5 km2)
and (12 h, 50 km2) space–time scales, respectively.
In addition to the results obtained by considering
all the hydrological meshes overall for the four rain
events, a segregation of the results is proposed for the
mountainous (M) and plain (P) parts of the CVMHO
window, and for two radar ranges. The values used
to segregate according to radar range are different
for the mountainous and plain regions, respectively
64 km and 57 km, to allow homogeneous sampling of
the resulting four geographical domains (M < 64 km,
M > 64 km, P < 57 km and P > 57 km) in terms of
the number of reference meshes. To account for the
sampling issue, we curtailed each plot at the reference
value above which there are only about 10 data points.
Concerning the error means (Figs. 8(a) and 9(a)), note
that the results are quite different in terms of condi-
tional bias for the two space–time scales, as already
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10 Guy Delrieu et al.

(b)
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Fig. 9 (a) Mean and (b) standard deviation of the errors
between the radar QPE and reference rainfall vs the ref-
erence rainfall for the (12 h; 50 km2) space–time scales.
See Fig. 8 for explanation.

noted in Fig. 1. From these graphs, two trends can be
observed:

(a) There is a positive conditional bias for the
P < 57 km region for the highest rain amounts
at both time scales, while the bias remains mod-
erate in the M < 64 km region.

(b) The behaviour of the error means is quite simi-
lar at the longer ranges for both the mountainous
and plain regions—marked negative conditional
bias for the (1 h, 5 km2) scales; slight positive
conditional bias for the (12 h, 50 km2) scales.
This similarity may be explained by the sig-
nificant vertical extent of the considered rain
systems that limits the effect of the mountain
range on their visibility.

The above two points illustrate the fact that the range-
dependent effects are not fully corrected for by the
radar data processing system, with an underestimation
at longer ranges for the 1-h time step, compensated
for (by means of the Z–R relationship optimization)
by an overestimation at closer range in the plain.

Concerning, the standard deviations of the errors,
note that they increase more or less linearly between
0 and about one third of the maximum reference
value, then sampling issues and the choice of the
non-parametric method used to adjust the GAMLSS
model (penalised splines) lead to a stabilization or a
decrease. There is no distinct behaviour between the

results obtained for the different regions. The most
striking feature is probably that the standard devia-
tion of the errors between the radar and the reference
values are similar to the estimation standard deviation
of the reference values: in other words, the available
raingauge network does not provide a very reliable
reference for the space scales considered in this work.
This is very different from the case of Kirstetter et al.
(2010), who obtained reliable reference values (in
that the estimation standard deviations of the refer-
ence values were significantly lower than those of the
errors between radar and reference values) for 1-km2

meshes containing raingauges. This is an indication of
the strong decrease in the spatial representativeness of
raingauges as the spatial scale increases, even for the
longer time step (12 h) considered in this study.

SUMMARY AND CONCLUSION

In the present work, a geostatistical approach was
implemented to establish reference values from rain-
gauge data to assess radar QPEs in the context
of Mediterranean heavy precipitation events. The
main catchments of the region were divided into
hydrological meshes of varying sizes (from 5 to
100 km2). The reference values were estimated using
the climatological OK technique by selecting refer-
ence meshes presenting normalized estimation vari-
ances of less than 0.1. Such meshes generally contain
raingauge(s) or are located in the vicinity of rain-
gauges. In a second step, the estimation variances
were de-normalized using a technique based on the
statistical link that exists between the standard devi-
ation and the mean of the rain fields. With such
a method, estimation variances can then be associ-
ated with each estimate to assess the quality of the
estimation, or can be modelled as a function of the
reference rainfall for overall assessment, which was
the objective of our study.

After establishing the reference values and their
estimation variances, the radar QPEs were compared
to the reference values over a range of spatial and
temporal scales (1–12 h; 5–100 km2) using a number
of classical criteria: bias, coefficient of determina-
tion and Nash-Sutcliffe efficiency. As expected, the
agreement increases slightly as the space–time scales
increase. The statistical distributions of the errors
between estimated and reference values, conditional
on the reference rainfall, were then modelled in detail
by means of the so-called generalized additive mod-
els for location, scale and shape. It was found that
the power exponential probability density function
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Dependence of radar QPE error on rain intensity 11

(pdf), a three-parameter symmetric pdf, provides a
better fit compared to the Gaussian pdf, with a more
leptokurtic behaviour. The Reverse Gumbel pdf, a
two-parameter moderately positive skewed pdf, was
generally found to be superior to the symmetric pdfs,
probably due to the inherent asymmetry of the residu-
als and the presence of radar QPE outliers associated
with phenomena such as residual clutter. The condi-
tional bias of the errors presents a complex structure
as a function of the space and time scales, and as
a function of the radar range and the considered
geographical sub-domains (mountain vs plain). The
standard deviation of the errors naturally decreases
as the space and time scales increase; its evolution as
a function of the reference rainfall is less influenced,
compared to the bias, by radar range and geographi-
cal considerations. Importantly, the comparison of the
estimation standard deviation of the reference rain-
fall and the standard deviation of the errors between
radar and reference rainfall indicates that the avail-
able raingauge network is not dense enough to provide
an accurate reference for the space scales considered,
which are those useful for hydrological prediction in
the region of interest.

Defining a radar error model therefore remains
a complex topic, since such a model depends on the
way radar data are processed, the space and time
scales, the radar range and the topographic features
of the region of interest. In addition, the sample size
impacts on the robustness of the statistical analysis,
especially for the highest rain rates. Due to their com-
plementarity and inherent limitations, future work
will be devoted to better conciliating the physical and
product-error-driven approaches. We will also con-
sider the implications of the dependencies of the error
shown in this work on the generation techniques that
can be used to obtain radar rainfall ensembles.
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